In this paper, we introduce a novel semantic description approach inspired on Prototype Theory foundations. We propose a Computational Prototype Model (CPM) that encodes and stores the central semantic meaning of objects category: the semantic prototype. Also, we introduce a Prototype-based Description Model that encodes the semantic meaning of an object while describing its features using our CPM model. Our description method uses semantic prototypes computed by CNN-classifications models to create discriminative signatures that describe an object highlighting its most distinctive features within the category. Our experiments show that: i) our CPM model (semantic prototype + distance metric) is able to describe the internal semantic structure of objects categories; ii) our semantic distance metric can be understood as the object visual typicality score within a category; iii) our descriptor encoding is semantically interpretable and significantly outperforms other image global encodings in clustering and classification tasks.


翻译:在本文中,我们引入了一种基于原型理论基础的新型语义描述方法。 我们提出一个计算性原型模型(CPM),用于编码和储存物体类别的中央语义含义:语义原型。 此外,我们引入了一种基于原型的描述模型,用于编码物体的语义含义,同时使用我们的CPM模型描述物体的特征。我们的描述方法使用CNN分类模型计算出的语义原型来创建歧视性签名,描述一个在类别中突出其最独特特征的对象。我们的实验显示:i)我们的CPM模型(Semic原型+距离度)能够描述物体类别的内部语义结构;ii)我们的语义距离测量可被理解为一个类别中的物体视觉典型分数;iii) 我们的语义编码是可进行语义解释的,大大超越了分组和分类任务中的其他全球图像编码。

0
下载
关闭预览

相关内容

【CVPR2021】动态度量学习
专知会员服务
40+阅读 · 2021年3月30日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
4+阅读 · 2019年8月7日
Image Captioning: Transforming Objects into Words
Arxiv
7+阅读 · 2019年6月14日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员