Facial expression transfer between two unpaired images is a challenging problem, as fine-grained expression is typically tangled with other facial attributes. Most existing methods treat expression transfer as an application of expression manipulation, and use predicted global expression, landmarks or action units (AUs) as a guidance. However, the prediction may be inaccurate, which limits the performance of transferring fine-grained expression. Instead of using an intermediate estimated guidance, we propose to explicitly transfer facial expression by directly mapping two unpaired input images to two synthesized images with swapped expressions. Specifically, considering AUs semantically describe fine-grained expression details, we propose a novel multi-class adversarial training method to disentangle input images into two types of fine-grained representations: AU-related feature and AU-free feature. Then, we can synthesize new images with preserved identities and swapped expressions by combining AU-free features with swapped AU-related features. Moreover, to obtain reliable expression transfer results of the unpaired input, we introduce a swap consistency loss to make the synthesized images and self-reconstructed images indistinguishable. Extensive experiments show that our approach outperforms the state-of-the-art expression manipulation methods for transferring fine-grained expressions while preserving other attributes including identity and pose.


翻译:两种未偏差图像之间的偏移表达式转移是一个棘手的问题,因为细微微的表达式通常与其他面部属性交织在一起。 多数现有方法将表达式转移作为表达式操纵的一种应用, 并使用预测的全球表达式、 地标或动作单位( AUS) 作为指导。 然而, 预测可能不准确, 从而限制了微微偏差表达式的性能。 我们提议通过直接绘制两个未偏差的输入图像, 将面部表达式明确转移给两个配有互换表达式的合成图像。 具体地说, 考虑到AUs 语法描述精细微的表达式细节, 我们提出一个新的多级对抗性培训方法, 将输入图像分解成两种精细的表达式: 与AU有关的特性和非AU无偏差的表达式。 然后, 我们可以将新图像与保留的身份和互换表达式结合起来, 将非欧盟的特性和互换的与非盟相关特性结合起来。 此外, 为了获得未偏差的输入式表达式的可靠表达式转移结果, 我们引入了一种互换式一致性损失, 将使我们的合成图像和自我调整的图像和自我调整的表达式方式, 以显示其他保存式的图像的演示式方式。

0
下载
关闭预览

相关内容

【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
A Compact Embedding for Facial Expression Similarity
Arxiv
7+阅读 · 2018年4月24日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员