In this paper, we propose a deformable convolution-based generative adversarial network (DCNGAN) for perceptual quality enhancement of compressed videos. DCNGAN is also adaptive to the quantization parameters (QPs). Compared with optical flows, deformable convolutions are more effective and efficient to align frames. Deformable convolutions can operate on multiple frames, thus leveraging more temporal information, which is beneficial for enhancing the perceptual quality of compressed videos. Instead of aligning frames in a pairwise manner, the deformable convolution can process multiple frames simultaneously, which leads to lower computational complexity. Experimental results demonstrate that the proposed DCNGAN outperforms other state-of-the-art compressed video quality enhancement algorithms.
翻译:在本文中,我们提出一个基于变形的变形变异式对抗网络(DCNGAN),用于提高压缩视频的感官质量。DCNGAN还适应了量化参数(QPs ) 。 与光学流相比,变形变异会更有效、更高效地调整框架。 变形变异可以在多个框架上运作,从而利用更多时间信息,这有利于提高压缩视频的感知质量。 变形变异可以同时处理多个框架,而不是以对齐方式对齐框架,从而降低计算的复杂性。 实验结果显示,拟议的DCNGAN比其他最先进的压缩视频质量增强算法要好得多。