Color images are easy to understand visually and can acquire a great deal of information, such as color and texture. They are highly and widely used in tasks such as segmentation. On the other hand, in indoor person segmentation, it is necessary to collect person data considering privacy. We propose a new task for human segmentation from invisible information, especially airborne ultrasound. We first convert ultrasound waves to reflected ultrasound directional images (ultrasound images) to perform segmentation from invisible information. Although ultrasound images can roughly identify a person's location, the detailed shape is ambiguous. To address this problem, we propose a collaborative learning probabilistic U-Net that uses ultrasound and segmentation images simultaneously during training, closing the probabilistic distributions between ultrasound and segmentation images by comparing the parameters of the latent spaces. In inference, only ultrasound images can be used to obtain segmentation results. As a result of performance verification, the proposed method could estimate human segmentations more accurately than conventional probabilistic U-Net and other variational autoencoder models.
翻译:可见的颜色图像很容易理解,并且可以获取大量信息,如颜色和纹理等。 它们被高度和广泛用于分割等任务。 另一方面,在室内人的分解中,有必要收集个人数据,以隐私为考虑。 我们建议从无形信息,特别是空载超声波中收集人类分解的新任务。 我们首先将超声波转换为反映超声波方向图像(超声波图像),以便从无形信息中进行分解。 虽然超声波图像可以大致识别一个人的位置,但详细的形状是模糊的。 为了解决这个问题,我们提议在培训期间同时使用超声波和分解图像的协作学习 U- 网络, 通过比较潜空空间的参数来关闭超声波和分解图像之间的概率分布。 推断, 只有超声波图像才能用于获取分解结果。 通过性能验证, 拟议的方法可以比常规的对振动 U- Net 和其他变式自动coder 模型更精确地估计人类分解。