We introduce FLEURS, the Few-shot Learning Evaluation of Universal Representations of Speech benchmark. FLEURS is an n-way parallel speech dataset in 102 languages built on top of the machine translation FLoRes-101 benchmark, with approximately 12 hours of speech supervision per language. FLEURS can be used for a variety of speech tasks, including Automatic Speech Recognition (ASR), Speech Language Identification (Speech LangID), Translation and Retrieval. In this paper, we provide baselines for the tasks based on multilingual pre-trained models like mSLAM. The goal of FLEURS is to enable speech technology in more languages and catalyze research in low-resource speech understanding.
翻译:我们引入了通用语言代表制的微小学习评估FLEURS基准。FLEURS是一个以102种语言建立的双向平行语言语音数据集,以机器翻译FLORes-101基准为基础,每个语言都有大约12小时的语音监督。FLEURS可用于各种语言的演讲任务,包括自动语音识别(ASR)、语音语言识别(Speech LangID)、翻译和检索。在本文中,我们为基于多种语言的预先培训模式(如MSLAM)的任务提供了基准。FLEURS的目标是使语言技术能够以更多语言进行,并促进对低资源语言理解的研究。