We present a new method for causal discovery in linear structural equation models. We propose a simple ``trick'' based on statistical testing in linear models that can distinguish between ancestors and non-ancestors of any given variable. Naturally, this can then be extended to estimating the causal order among all variables. We provide explicit error control for false causal discovery, at least asymptotically. This holds true even under Gaussianity, where other methods fail due to non-identifiable structures. These type I error guarantees come at the cost of reduced empirical power. Additionally, we provide an asymptotically valid goodness of fit p-value to assess whether multivariate data stems from a linear structural equation model.
翻译:在线性结构方程式模型中,我们提出了一个新的因果发现方法。我们提出一个简单的“trick' ”, 其依据是线性模型的统计测试,该模型可以区分任何特定变量的祖先和非祖先。 当然,这可以扩大到估计所有变量的因果顺序。 我们对错误的因果发现提供明确的错误控制,至少是短暂的。即使在高西亚,这也是正确的,因为其他方法由于无法识别的结构而失败。这类I型错误的保证是以经验性能力下降为代价的。此外,我们提供了一种无与伦比的准确价值,用来评估多变量数据是否来自线性结构方程式模型。</s>