Stance detection is the identification of an author's beliefs about a subject from a document. Researchers widely rely on sentiment analysis to accomplish this. However, recent research has show that sentiment analysis is only loosely correlated with stance, if at all. This paper advances methods in text analysis by precisely defining the task of stance detection, providing a generalized framework for the task, and then presenting three distinct approaches for performing stance detection: supervised classification, zero-shot classification with NLI classifiers, and in-context learning. In doing so, I demonstrate how zero-shot and few-shot language classifiers can replace human labelers for a variety of tasks and discuss how their application and limitations differ from supervised classifiers. Finally, I demonstrate an application of zero-shot stance detection by replicating Block Jr et al. (2022).
翻译:暂无翻译