Homophily - the attraction of similarity - profoundly influences social interactions, affecting associations, information disclosure, and the dynamics of social exchanges. Organizational studies reveal that when professional and personal boundaries overlap, individuals from minority backgrounds often encounter a dilemma between authenticity and inclusion due to these homophily-driven dynamics: if they disclose their genuine interests, they risk exclusion from the broader conversation. Conversely, to gain inclusion, they might feel pressured to assimilate. How might the nature and design of social media platforms, where different conversational contexts frequently collapse, and the recommender algorithms that are at the heart of these platforms, which can prioritize content based on network structure and historical user engagement, impact these dynamics? In this paper, we employ agent-based simulations to investigate this question. Our findings indicate a decline in the visibility of professional content generated by minority groups, a trend that is exacerbated over time by recommendation algorithms. Within these minority communities, users who closely resemble the majority group tend to receive greater visibility. We examine the philosophical and design implications of our results, discussing their relevance to questions of informational justice, inclusion, and the epistemic benefits of diversity.
翻译:暂无翻译