Presence-absence data is defined by vectors or matrices of zeroes and ones, where the ones usually indicate a "presence" in a certain place. Presence-absence data occur for example when investigating geographical species distributions, genetic information, or the occurrence of certain terms in texts. There are many applications for clustering such data; one example is to find so-called biotic elements, i.e., groups of species that tend to occur together geographically. Presence-absence data can be clustered in various ways, namely using a latent class mixture approach with local independence, distance-based hierarchical clustering with the Jaccard distance, or also using clustering methods for continuous data on a multidimensional scaling representation of the distances. These methods are conceptually very different and can therefore not easily be compared theoretically. We compare their performance with a comprehensive simulation study based on models for species distributions. This has been accepted for publication in Ferreira, J., Bekker, A., Arashi, M. and Chen, D. (eds.) Innovations in multivariate statistical modelling: navigating theoretical and multidisciplinary domains, Springer Emerging Topics in Statistics and Biostatistics.
翻译:例如,在调查地理物种分布、遗传信息或文本中出现某些术语时,会出现缺席数据。 有许多应用软件将此类数据分组;一个例子是找到所谓的生物元素,即往往在地理上同时出现的物种群。 不存在数据可以以各种方式分组,即使用具有当地独立性的潜在等级混合方法、与雅克尔距离相隔的基于距离的基于距离的基于距离的基于距离的基于距离的等级分组组合,或者也使用组合方法以持续数据,这些方法在概念上非常不同,因此在理论上无法比较。我们将其性能与基于物种分布模型的综合模拟研究进行比较,这在Ferreira、J.、Bekker、A.、Arashi、M.和Chen、D.(编辑)的多变统计建模中已被接受。