We show that generating English Wikipedia articles can be approached as a multi- document summarization of source documents. We use extractive summarization to coarsely identify salient information and a neural abstractive model to generate the article. For the abstractive model, we introduce a decoder-only architecture that can scalably attend to very long sequences, much longer than typical encoder- decoder architectures used in sequence transduction. We show that this model can generate fluent, coherent multi-sentence paragraphs and even whole Wikipedia articles. When given reference documents, we show it can extract relevant factual information as reflected in perplexity, ROUGE scores and human evaluations.
翻译:我们显示,生成英文维基百科文章可以作为源文件的多文档汇总。 我们使用采掘汇总来粗略地识别突出的信息和神经抽象模型来生成文章。 对于抽象模型,我们引入了一种解码器独家结构,它可以适应非常长的序列,比在序列转换中使用的典型编码器解码器结构要长得多。 我们显示,该模型可以生成流畅、连贯的多语句段落,甚至整个维基百科文章。 当给定参考文件时,我们显示它可以提取在易懂性、ROUGE分数和人文评价中反映的相关事实信息。