Graph data completion is a fundamentally important issue as data generally has a graph structure, e.g., social networks, recommendation systems, and the Internet of Things. We consider a graph where each node has a data matrix, represented as a \textit{graph-tensor} by stacking the data matrices in the third dimension. In this paper, we propose a \textit{Convolutional Graph-Tensor Net} (\textit{Conv GT-Net}) for the graph data completion problem, which uses deep neural networks to learn the general transform of graph-tensors. The experimental results on the ego-Facebook data sets show that the proposed \textit{Conv GT-Net} achieves significant improvements on both completion accuracy (50\% higher) and completion speed (3.6x $\sim$ 8.1x faster) over the existing algorithms.
翻译:图表数据完成是一个非常重要的问题, 因为数据通常有一个图形结构, 例如社交网络、 推荐系统和物联网。 我们考虑一个图表, 显示每个节点有一个数据矩阵, 以 \ textit{ graph- tensor} 表示, 将数据矩阵堆叠到第三个维度 。 在本文中, 我们为图形数据完成问题建议了一个\ textit{ Convolutional 图形- tensor Net} (\ textit{ Conv GT- Net} ), 因为它使用深层神经网络来学习图形吨数的总体变换。 有关自定义的实验结果显示, 提议的 \ textit{ Conv GT- Net} 在现有算法的完成精度( 50 <unk> 更高) 和 完成速度( 3.6x $sim$ 8.1x 更快) 取得了显著的改进 。</s>