We consider a space-time variational formulation of a PDE-constrained optimal control problem with box constraints on the control and a parabolic PDE with Robin boundary conditions. In this setting, the optimal control problem reduces to an optimization problem for which we derive necessary and sufficient optimality conditions. We propose to utilize a well-posed inf-sup stable framework of the PDE in appropriate Lebesgue-Bochner spaces. Next, we introduce a conforming simultaneous space-time (tensorproduct) discretization in these Lebesgue-Bochner spaces. Using finite elements in space and piecewise linear functions in time, this setting is known to be equivalent to a Crank-Nicolson time stepping scheme for parabolic problems. The optimization problem is solved by a projected gradient method. We show numerical comparisons for problems in 1d, 2d and 3d in space. It is shown that the classical semi-discrete primal-dual setting is more efficient for small problem sizes and moderate accuracy. However, the simultaneous space-time discretization shows good stability properties and even outperforms the classical approach as the dimension in space and/or the desired accuracy increases.


翻译:我们考虑的是受PDE限制的最佳控制问题的时空变式配方,对控件加以限制,对Robin边界条件进行抛射式PDE 。在这种环境下,最佳控制问题被降为优化问题,因此我们得出必要和充分的最佳条件。我们提议在适当的Lebesgue-Bochner空间使用PDE 的精密的内在稳定框架。接下来,我们在这些Lebesgue-Bochner空间引入一个同步的时空时空分解(超低产品)同步。在空间使用有限的元素和时空线函数,这一设置已知相当于对parbolic问题采用Crank-Nicolson时间阶梯度计划。优化问题由预测的梯度方法解决。我们对1d、2d和3d的空间问题进行了数字比较。我们发现,典型的半分位原始环境对于小问题大小和中度精确度比较更有效。然而,同时使用空间分解时,空间分解时显示良好的稳定性,甚至超越了空间和空间尺寸所期望的典型方法的精确度。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2020年12月3日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员