Multi-model Monte Carlo methods, such as multi-level Monte Carlo (MLMC) and multifidelity Monte Carlo (MFMC), allow for efficient estimation of the expectation of a quantity of interest given a set of models of varying fidelities. Recently, it was shown that the MLMC and MFMC estimators are both instances of the approximate control variates (ACV) framework [Gorodetsky et al. 2020]. In that same work, it was also shown that hand-tailored ACV estimators could outperform MLMC and MFMC for a variety of model scenarios. Because there is no reason to believe that these hand-tailored estimators are the best among a myriad of possible ACV estimators, a more general approach to estimator construction is pursued in this work. First, a general form of the ACV estimator variance is formulated. Then, the formulation is utilized to generate parametrically-defined estimators. These parametrically-defined estimators allow for an optimization to be pursued over a larger domain of possible ACV estimators. The parametrically-defined estimators are tested on a large set of model scenarios, and it is found that the broader search domain enabled by parametrically-defined estimators leads to greater variance reduction.


翻译:Monte Carlo多模范方法,如多级蒙特卡洛(MLMC)和多纤维蒙特卡洛(MFMC)等多模型方法,能够有效估计对不同忠诚模式的一定利益期望值。最近,显示MLMC和MFMC的估测器是大约控制变数框架[Gorodetsky等人,2020年]的范例。在同一工作中,还显示手工定制的ACV估计仪可以超过MLMC和MFMC的模型假设值。由于没有理由相信这些手工定制的估测器是各种可能的ACV估计器中最好的,因此在这项工作中采用了一种更一般的估测方法。首先,制定了ACV估测器的通用差异表。然后,用这种公式来生成有比对称的估测器。这些经过精确界定的估测仪可以使范围更大的MLMC和MFMC能够对各种模型进行优化,在范围更广的AC测测算器中,在范围上,对AC的测算模型进行更宽的测测测度测测度测算,通过测测测测测测测的模型进行范围的模型进行。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月5日
Arxiv
0+阅读 · 2021年2月4日
Arxiv
0+阅读 · 2021年2月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员