In this study, we propose a projection estimation method for large-dimensional matrix factor models with cross-sectionally spiked eigenvalues. By projecting the observation matrix onto the row or column factor space, we simplify factor analysis for matrix series to that for a lower-dimensional tensor. This method also reduces the magnitudes of the idiosyncratic error components, thereby increasing the signal-to-noise ratio, because the projection matrix linearly filters the idiosyncratic error matrix. We theoretically prove that the projected estimators of the factor loading matrices achieve faster convergence rates than existing estimators under similar conditions. Asymptotic distributions of the projected estimators are also presented. A novel iterative procedure is given to specify the pair of row and column factor numbers. Extensive numerical studies verify the empirical performance of the projection method. Two real examples in finance and macroeconomics reveal factor patterns across rows and columns, which coincides with financial, economic, or geographical interpretations.


翻译:在这次研究中,我们为具有跨截面峰值的大型矩阵要素模型提出了一个预测估计方法。通过在行或列系数空间上预测观测矩阵,我们将矩阵序列的系数分析简化为较低维度振标的矩阵序列。这个方法还降低了特异性误差组成部分的大小,从而增加了信号-噪音比率,因为投影矩阵通过线性过滤特异性误差矩阵。我们理论上证明,预测的系数装载矩阵的测算员在类似条件下比现有测算员达到更快的趋同率。还介绍了预测的估测员的随机分布。提供了一种新的迭接程序,以具体说明行数和列系数的对数。广泛的数字研究核实了预测方法的经验性表现。在金融和宏观经济学中,有两个真实的例子揭示了跨行和列的系数模式,这与金融、经济或地理解释相吻合。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员