Reconstructing spectral functions from Euclidean Green's functions is an important inverse problem in many-body physics. However, the inversion is proved to be ill-posed in the realistic systems with noisy Green's functions. In this Letter, we propose an automatic differentiation(AD) framework as a generic tool for the spectral reconstruction from propagator observable. Exploiting the neural networks' regularization as a non-local smoothness regulator of the spectral function, we represent spectral functions by neural networks and use propagator's reconstruction error to optimize the network parameters unsupervisedly. In the training process, except for the positive-definite form for the spectral function, there are no other explicit physical priors embedded into the neural networks. The reconstruction performance is assessed through relative entropy and mean square error for two different network representations. Compared to the maximum entropy method, the AD framework achieves better performance in large-noise situation. It is noted that the freedom of introducing non-local regularization is an inherent advantage of the present framework and may lead to substantial improvements in solving inverse problems.


翻译:从 Euclidean Green 函数重建光谱功能是许多身体物理学中的一个重要反向问题。 但是, 事实证明, 在现实系统中, 静音绿色函数的功能不正确。 在本信中, 我们提议一个自动区分( AD) 框架, 作为光谱重建的通用工具, 与可观测的推进器相比, 将神经网络正规化为光谱功能的非局部平稳调节器, 我们代表神经网络的光谱功能, 并使用宣传器的重建错误来优化网络参数, 不受监督。 在培训过程中, 除了光谱函数的正解式外, 没有其他明显的物理前置装置嵌入神经网络。 重建绩效是通过两个不同的网络代表器的相对诱导和中位错误进行评估的。 与最大诱导法相比, 自动框架在大型神经环境下取得较好的性能。 人们注意到, 引入非本地规范的自由是当前框架的固有优势, 并可能导致在解决问题方面有重大改进 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
专知会员服务
12+阅读 · 2019年11月23日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员