Recent advances in brain clearing and imaging have made it possible to image entire mammalian brains at sub-micron resolution. These images offer the potential to assemble brain-wide atlases of neuron morphology, but manual neuron reconstruction remains a bottleneck. Several automatic reconstruction algorithms exist, but most focus on single neuron images. In this paper, we present a probabilistic reconstruction method, ViterBrain, which combines a hidden Markov state process that encodes neuron geometry with a random field appearance model of neuron fluorescence. Our method utilizes dynamic programming to compute the global maximizers of what we call the "most probable" neuron path. Our most probable estimation method models the task of reconstructing neuronal processes in the presence of other neurons, and thus is applicable in images with several neurons. Our method operates on image segmentations in order to leverage cutting edge computer vision technology. We applied our algorithm to imperfect image segmentations where false negatives severed neuronal processes, and showed that it can follow axons in the presence of noise or nearby neurons. Additionally, it creates a framework where users can intervene to, for example, fit start and endpoints. The code used in this work is available in our open-source Python package brainlit.
翻译:大脑清理和成像方面的最新进展使得能够以亚微型分辨率将整个哺乳动物大脑成像成像成像成像成像成像。这些图象提供了收集全脑神经形态图集的潜力,但人工神经重建仍然是一个瓶颈。有几种自动重建算法存在,但大多侧重于单一神经图象。在本论文中,我们展示了一种概率重建方法,维泰布雷恩,它将隐蔽的马尔科夫状态进程与神经荧光外观模式混合起来。我们的方法利用动态程序来计算全球范围内“最可能”神经神经路径的最大化数据。我们最可能采用的方法模型来模拟在其他神经元面前重建神经过程的任务,因此适用于若干神经元的图像。我们的方法对图像分割进行操作,以便利用尖端计算机视觉技术。我们用我们的算法将不完善的图像分部分与神经神经元的随机外观模型结合起来。我们的方法利用动态程序来计算出我们称之为“最可能的”神经路径。此外,我们最有可能使用的方法模型来模拟全球范围内的神经路径。此外,我们最有可能用这个软件模型来构建一个框架,可以用来对我们的大脑终端进行演示。