We present a general approach, based on exponential inequalities, to derive bounds on the generalization error of randomized learning algorithms. Using this approach, we provide bounds on the average generalization error as well as bounds on its tail probability, for both the PAC-Bayesian and single-draw scenarios. Specifically, for the case of sub-Gaussian loss functions, we obtain novel bounds that depend on the information density between the training data and the output hypothesis. When suitably weakened, these bounds recover many of the information-theoretic bounds available in the literature. We also extend the proposed exponential-inequality approach to the setting recently introduced by Steinke and Zakynthinou (2020), where the learning algorithm depends on a randomly selected subset of the available training data. For this setup, we present bounds for bounded loss functions in terms of the conditional information density between the output hypothesis and the random variable determining the subset choice, given all training data. Through our approach, we recover the average generalization bound presented by Steinke and Zakynthinou (2020) and extend it to the PAC-Bayesian and single-draw scenarios. For the single-draw scenario, we also obtain novel bounds in terms of the conditional $\alpha$-mutual information and the conditional maximal leakage.


翻译:我们提出了一个基于指数性不平等的一般方法,以从随机学习算法的笼统错误中得出界限。使用这种方法,我们提供了PAC-Bayesian 和单拖式情景中平均一般错误及其尾概率的界限。具体地说,对于亚高加索损失函数,我们获得了取决于培训数据与产出假设之间信息密度的新型界限。当适当削弱时,这些界限恢复了文献中的许多信息-理论界限。我们还将拟议的指数性不平等方法扩展至Steinke和Zakynthinou(202020年)最近引入的设定,在该设置中,学习算法取决于随机选择的现有培训数据的一部分。对于这一设置,我们从输出假设与确定子选择的随机变量之间的有条件信息密度的角度,提出了约束性损失功能的界限。鉴于所有培训数据,我们的方法,我们恢复了Steinke和Zakynthinou(202020年)提出的平均一般化方法,将拟议的指数性不平等方法扩展至Steinke和Zakynthinou(2020年)最近引入的设置,而学习算法则取决于随机选定的一组培训数据组合中的部分。关于标准-Basliasimal-Basimal-harnial-lausial 和Alifal-lausial 和Ali-laview-lad 和Ali-lad 的单一条件。</s>

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员