Object pose estimation is a core computer vision problem and often an essential component in robotics. Pose estimation is usually approached by seeking the single best estimate of an object's pose, but this approach is ill-suited for tasks involving visual ambiguity. In such cases it is desirable to estimate the uncertainty as a pose distribution to allow downstream tasks to make informed decisions. Pose distributions can have arbitrary complexity which motivates estimating unparameterized distributions, however, until now they have only been used for orientation estimation on SO(3) due to the difficulty in training on and normalizing over SE(3). We propose a novel method for pose distribution estimation on SE(3). We use a hierarchical grid, a pyramid, which enables efficient importance sampling during training and sparse evaluation of the pyramid at inference, allowing real time 6D pose distribution estimation. Our method outperforms state-of-the-art methods on SO(3), and to the best of our knowledge, we provide the first quantitative results on pose distribution estimation on SE(3). Code will be available at spyropose.github.io
翻译:对象构成估计是一个计算机核心视觉问题,而且往往是机器人中一个必不可少的组成部分。在进行这种估计时,通常寻求对物体构成的单一最佳估计,但这种方法不适合视觉模糊性的任务。在这种情况下,有必要估计不确定性,因为其构成分布使下游任务能够作出知情的决定。 粒子分布可能会具有任意的复杂性,从而促使对SO(3)的未分分布进行估计,但直到现在,由于SE(3)的培训和正规化困难,这些分布只能用于对SO(3)的定向估计。我们提议了对SE(3)的分布估计采用新的方法。我们使用一个等级网,一个金字塔,在训练期间和对金字塔的稀疏评估中能够高效率地进行取样,允许实际时间6D的分布估计。我们的方法优于SO(3)的先进方法,并且为了我们的最佳知识,我们提供了SE(3)的首次分布估计的定量结果。 代码将在Syprob.github提供。</s>