We propose the generalised Fisher information or the one-parameter extended class of the Fisher information for the case of one random variable. This new form of the Fisher information is obtained from the intriguing connection between the standard Fisher information and the variational principle together with the non-uniqueness property of the Lagrangian. The generalised Cram\'er-Rao inequality is also derived. The interesting point is about the fact that the whole Fisher information hierarchy, except for the standard Fisher information, does not follow the additive rule. The whole Fisher information hierarchy is also obtained from the two-parameter Kullback-Leibler divergence. Furthermore, the idea can be directly extended to obtain the one-parameter generalised Fisher information matrix for the case of one random variable, but with multi-estimated parameters. The hierarchy of the Fisher information matrix is obtained. The geometrical meaning of the first two matrices in the hierarchy is studied through the normal distribution. An interesting point is that these first two Fisher matrices give different nature of curvature on the same statistical manifold of the normal distribution.
翻译:对于一个随机变量,我们建议一般的渔业信息或渔业信息扩展的单数级。这种新的渔业信息形式来自标准渔业信息与变异原则之间的令人感兴趣的联系以及拉格朗吉亚人的非独特性属性。还得出了一般的Cram\'er-Rao不平等。有趣的一点是,除了标准渔业信息外,整个渔业信息等级并不遵循添加规则。整个渔业信息等级也是从两个单数库回背-利伯尔差异中获得的。此外,这一想法可以直接扩展,以获得一个随机变量的单数一般渔业信息矩阵,但有多估计参数。获取了渔业信息矩阵的等级。通过正常分布来研究结构中头两个矩阵的几何含义。一个有趣的点是,这前两个渔业矩阵对正常分布的同一统计模式具有不同的曲线性质。