In low resource settings, data augmentation strategies are commonly leveraged to improve performance. Numerous approaches have attempted document-level augmentation (e.g., text classification), but few studies have explored token-level augmentation. Performed naively, data augmentation can produce semantically incongruent and ungrammatical examples. In this work, we compare simple masked language model replacement and an augmentation method using constituency tree mutations to improve the performance of named entity recognition in low-resource settings with the aim of preserving linguistic cohesion of the augmented sentences.
翻译:在低资源环境下,通常利用数据增强战略来改善业绩,许多办法尝试了文件层面的增强(如文本分类),但很少研究过象征性的增强。从天真的角度讲,数据增强可以产生语义不相容和非语法的例子。在这项工作中,我们比较了简单的隐蔽语言模式替换和一种增强方法,利用选区树突变来改进在低资源环境中对指定实体的承认,目的是保持增加刑期的语言一致性。