Pre-trained Language Models (PLMs) have been applied in NLP tasks and achieve promising results. Nevertheless, the fine-tuning procedure needs labeled data of the target domain, making it difficult to learn in low-resource and non-trivial labeled scenarios. To address these challenges, we propose Prompt-based Text Entailment (PTE) for low-resource named entity recognition, which better leverages knowledge in the PLMs. We first reformulate named entity recognition as the text entailment task. The original sentence with entity type-specific prompts is fed into PLMs to get entailment scores for each candidate. The entity type with the top score is then selected as final label. Then, we inject tagging labels into prompts and treat words as basic units instead of n-gram spans to reduce time complexity in generating candidates by n-grams enumeration. Experimental results demonstrate that the proposed method PTE achieves competitive performance on the CoNLL03 dataset, and better than fine-tuned counterparts on the MIT Movie and Few-NERD dataset in low-resource settings.
翻译:然而,微调程序需要目标域的标签数据,因此难以在低资源和非三类标签情景中学习。为了应对这些挑战,我们提议为低资源命名实体的识别工作采用快速文本配方(PTE),以更好地利用PLM系统的知识。我们首先将名称为实体的识别作为文本要求的任务重新配置。实体特定类型提示的原句被输入PLMS,以获得每个候选人的所需分数。然后,最高分的实体类型被选作最后标签。然后,我们将标注标签作为提示,将单词作为基本单位,而不是以n克计数处理,以降低候选人生成时间的复杂性。实验结果表明,拟议的PTE方法在CONLL03数据集上实现了竞争性性能,在低资源环境下,MITMemoc和几乎NERD数据集比经过微调的对应方更好。