In this work, we present a deep learning-based approach for image tampering localization fusion. This approach is designed to combine the outcomes of multiple image forensics algorithms and provides a fused tampering localization map, which requires no expert knowledge and is easier to interpret by end users. Our fusion framework includes a set of five individual tampering localization methods for splicing localization on JPEG images. The proposed deep learning fusion model is an adapted architecture, initially proposed for the image restoration task, that performs multiple operations in parallel, weighted by an attention mechanism to enable the selection of proper operations depending on the input signals. This weighting process can be very beneficial for cases where the input signal is very diverse, as in our case where the output signals of multiple image forensics algorithms are combined. Evaluation in three publicly available forensics datasets demonstrates that the performance of the proposed approach is competitive, outperforming the individual forensics techniques as well as another recently proposed fusion framework in the majority of cases.


翻译:在这项工作中,我们展示了一种深层次的基于学习的图象篡改本地化的方法。这个方法旨在将多种图像法证算法的结果结合起来,并提供一个精密的篡改本地化图,不需要专家知识,而且更容易由终端用户解释。我们的集成框架包括一套五种个人篡改本地化方法,用于在JPEG图像上拼接本地化。提议的深层学习混合模型是一个经过调整的结构,最初是为图像恢复任务而提议的,它同时进行多种操作,并辅之以一个关注机制,以便能够根据输入信号选择适当的操作。这种加权过程对于输入信号非常多样化的情况非常有益,例如我们把多种图像法证算法的输出信号合并在一起的情况。对三种公开提供的法医数据集的评价表明,拟议方法的绩效是竞争性的,优于个人法证技术以及最近提出的大多数案例的合并框架。

0
下载
关闭预览

相关内容

CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
16+阅读 · 2021年4月12日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
专知会员服务
44+阅读 · 2020年12月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
CVPR2019 | 全景分割:Attention-guided Unified Network
极市平台
9+阅读 · 2019年3月3日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
从Seq2seq到Attention模型到Self Attention(一)
量化投资与机器学习
76+阅读 · 2018年10月8日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关资讯
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
CVPR2019 | 全景分割:Attention-guided Unified Network
极市平台
9+阅读 · 2019年3月3日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
从Seq2seq到Attention模型到Self Attention(一)
量化投资与机器学习
76+阅读 · 2018年10月8日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员