We introduce and develop a set-based semantics for asynchronous TeamLTL. We consider two canonical logics in this setting: the extensions of TeamLTL by the Boolean disjunction and by the Boolean negation. We establish fascinating connections between the original semantics based on multisets and the new set-based semantics as well as show one of the first positive complexity theoretic results in the temporal team semantics setting. In particular we show that both logics enjoy normal forms that can be utilised to obtain results related to expressivity and complexity (decidability) of the new logics. We also relate and apply our results to recently defined logics whose asynchronicity is formalized via time evaluation functions.


翻译:我们引入并建立了异步TeamLTL的基于集合的语义。我们在这个设置中考虑了两个规范的逻辑:通过布尔或和通过布尔否定扩展的TeamLTL。我们建立了原始基于多重集的语义和新的基于集合的语义之间的有趣联系,并展示了时间团队语义设置中最早的正向复杂度理论结果之一。特别的,我们展示了这两个逻辑拥有能够用于获得有关新逻辑的表达能力和复杂度(可判定性)的结果的正常形式。我们还将我们的结果与最近通过时间评估函数形式化其异步性的定义的逻辑联系并应用。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
读书报告 | CN-DBpedia: A Chinese Knowledge Extraction System
科技创新与创业
19+阅读 · 2018年1月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月7日
Arxiv
0+阅读 · 2023年6月6日
Arxiv
14+阅读 · 2022年5月14日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
读书报告 | CN-DBpedia: A Chinese Knowledge Extraction System
科技创新与创业
19+阅读 · 2018年1月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员