Sampling-based motion planners such as RRT* and BIT*, when applied to kinodynamic motion planning, rely on steering functions to generate time-optimal solutions connecting sampled states. Implementing exact steering functions requires either analytical solutions to the time-optimal control problem, or nonlinear programming (NLP) solvers to solve the boundary value problem given the system's kinodynamic equations. Unfortunately, analytical solutions are unavailable for many real-world domains, and NLP solvers are prohibitively computationally expensive, hence fast and optimal kinodynamic motion planning remains an open problem. We provide a solution to this problem by introducing State Supervised Steering Function (S3F), a novel approach to learn time-optimal steering functions. S3F is able to produce near-optimal solutions to the steering function orders of magnitude faster than its NLP counterpart. Experiments conducted on three challenging robot domains show that RRT* using S3F significantly outperforms state-of-the-art planning approaches on both solution cost and runtime. We further provide a proof of probabilistic completeness of RRT* modified to use S3F.
翻译:在对流动动力运动进行规划时,RRT* 和BIT* 等以抽样为基础的运动规划者在应用到流动动力运动规划时,依靠指导功能来产生连接抽样国家的时间最佳解决方案。执行精确的指导功能需要分析解决时间最佳控制问题的办法,或者需要非线性程序(NLP)解答器,以便根据系统的动态动力等方程式解决边界值问题。不幸的是,许多现实世界域没有分析解决方案,而NLP解答器在计算上过于昂贵,因此快速和最佳的动态动力运动规划仍是一个未解决的问题。我们通过引入国家监督指导功能(S3F)为这一问题提供了解决办法,这是学习时间最佳指导功能的一种新颖办法。S3F能够产生比NLP对等式速度快的接近最佳的解决方案,用于规模的引导函数。在三个具有挑战性的机器人域上进行的实验表明,使用S3F的RRT* 明显超出了在解决方案成本和运行时的状态规划方法。我们进一步证明已修改的RRT* 用于SF3 。