In this work, we present a method for synthetic CT (sCT) generation from zero-echo-time (ZTE) MRI aimed at structural and quantitative accuracies of the image, with a particular focus on the accurate bone density value prediction. We propose a loss function that favors a spatially sparse region in the image. We harness the ability of a multi-task network to produce correlated outputs as a framework to enable localisation of region of interest (RoI) via classification, emphasize regression of values within RoI and still retain the overall accuracy via global regression. The network is optimized by a composite loss function that combines a dedicated loss from each task. We demonstrate how the multi-task network with RoI focused loss offers an advantage over other configurations of the network to achieve higher accuracy of performance. This is relevant to sCT where failure to accurately estimate high Hounsfield Unit values of bone could lead to impaired accuracy in clinical applications. We compare the dose calculation maps from the proposed sCT and the real CT in a radiation therapy treatment planning setup.
翻译:在这项工作中,我们提出了一个从零分时(ZTE)磁共振成像合成CT(sCT)生成的方法,其目的在于使图像的结构与数量均匀,特别侧重于准确的骨头密度值预测。我们提议了一个有利于图像中空间稀少区域的损失函数。我们利用多任务网络的能力来产生相关产出,以此作为框架,通过分类使感兴趣的区域(RoI)实现本地化,强调RoI内部数值的回归,并通过全球回归保持总体准确性。通过综合损失函数优化网络,将每项任务中的专门损失结合起来。我们展示了与RoI集中损失的多任务网络如何比网络的其他配置具有优势,以提高性能的准确性。这与SCT有关,因为如果不准确估计Hounsfield 单位的骨头值,临床应用的准确性会受到损害。我们比较了拟议的SCT的剂量计算图和辐射治疗规划中的实际CT。