Sparse linear regression methods generally have a free hyperparameter which controls the amount of sparsity, and is subject to a bias-variance tradeoff. This article considers the use of Aggregated hold-out to aggregate over values of this hyperparameter, in the context of linear regression with the Huber loss function. Aggregated hold-out (Agghoo) is a procedure which averages estimators selected by hold-out (cross-validation with a single split). In the theoretical part of the article, it is proved that Agghoo satisfies a non-asymptotic oracle inequality when it is applied to sparse estimators which are parametrized by their zero-norm. In particular , this includes a variant of the Lasso introduced by Zou, Hasti{\'e} and Tibshirani. Simulations are used to compare Agghoo with cross-validation. They show that Agghoo performs better than CV when the intrinsic dimension is high and when there are confounders correlated with the predictive covariates.
翻译:粗线性回归法通常有一个控制宽度的免费超参数, 并受到偏差权衡的制约。 本条考虑在休伯损失函数的线性回归背景下, 使用集压屏, 以累计超过此超参数的值。 集压屏蔽( Agghoo) 是一种程序, 平均测算器通过屏蔽( 交叉校准, 单分) 选中。 在文章的理论部分, 事实证明 Agghoo 在应用于被其零度偏低的稀有估计器时, 满足了非失常或触角的不平等。 特别是, 这包括Zou、 Hastai e 和 Tibshirani 引入的Lasso变量。 模拟用于将Agghoo与交叉校验比较。 它们显示, 当内在维度高时, 当有与预测的共形变量时, Agghoo 表现优于 CV 。