Kaplan-Meier estimators capture the survival behavior of a cohort. They are one of the key statistics in survival analysis. As with any estimator, they become more accurate in presence of larger datasets. This motivates multiple data holders to share their data in order to calculate a more accurate Kaplan-Meier estimator. However, these survival datasets often contain sensitive information of individuals and it is the responsibility of the data holders to protect their data, thus a naive sharing of data is often not viable. In this work, we propose two novel differentially private schemes that are facilitated by our novel synthetic dataset generation method. Based on these scheme we propose various paths that allow a joint estimation of the Kaplan-Meier curves with strict privacy guarantees. Our contribution includes a taxonomy of methods for this task and an extensive experimental exploration and evaluation based on this structure. We show that we can construct a joint, global Kaplan-Meier estimator which satisfies very tight privacy guarantees and with no statistically-significant utility loss compared to the non-private centralized setting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
54+阅读 · 2021年1月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
54+阅读 · 2021年1月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员