项目名称: 基于桥接式纳米结构敏感单元的纳电极集成检测微系统研究

项目编号: No.51305265

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 王艳

作者单位: 上海交通大学

项目金额: 25万元

中文摘要: 纳米材料凭借独特的理化性质,已成为提升普通传感器性能的利器。如何构造合理的敏感单元结构,突破纳-微集成制造难题,建立集成检测微系统,是推进纳电极传感器走向实际应用的重要技术前提。桥接式纳米结构敏感单元能够通过桥接在测试电极两端的有限数量纳米材料实现目标物超高灵敏度检测,目前已成为纳电极传感器首选的敏感单元结构。然而,传统加工方法无法有效解决桥接纳米材料与金属电极界面弱结合的问题,更不能满足其批量化制备和集成化发展的需求,极大的制约了其集成检测系统的发展。本项目基于纳米材料/聚合物复合物薄膜,巧妙组合微加工工艺构造纳-微跨尺度集成工艺路线,在此基础上提出一种集采样、制样、检测及后处理功能于一体的桥接式纳电极集成检测微系统设计。项目将建立针对桥接式纳米结构单元制备的纳米材料分散操控和可控植入的理论设计方法,开展桥接式纳米结构单元集成制备和敏感机制功能化集成系统研究,并通过原型器件验证设计思想。

中文关键词: 碳纳米管;微加工;结合力;场发射;气体检测

英文摘要: Nanomaterials can enhance ordinary sensor performance with unique physical and chemical properties. How to construct a reasonably sensitive cell structure, sovling nano-micro integrated manufacturing problems and establishing integrated detection micro-system are important technical prerequisites for advancing the nanoelectrodes sensor toward practical application. Ultra-high-sensitivity detection of the target material can be achieved by limited nanomaterial between the two test electrodes in bridge-nanostructures sensitive unit which has become the preferred nanoelectrodes sensor sensitive cell structure. However, the traditional methods can not effectively avoid weak bonding between the bridge nanomaterials and metal electrode. In addition, these methods can not meet the needs of the bulk of the preparation and the integrated development, which greatly restricts the development of the integrated detection system. In the present program, a nano-electrodes detection microsystem has been proposed based on a clever combination of nanomaterial/polymer composite film and nano-micro processing technology. This design includes sampling, sample preparation, detection and post-processing functionality. The theoretical design method will be constructed for control the dispersed nanomaterials and implanting process of t

英文关键词: carbon nanotube;micromachining;bonding;field emission;gas sensing

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
信息物理融合系统 (CPS)研究综述
专知会员服务
46+阅读 · 2022年3月14日
专知会员服务
56+阅读 · 2021年10月4日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
应用知识图谱的推荐方法与系统
专知会员服务
116+阅读 · 2020年11月23日
FPGA加速系统开发工具设计:综述与实践
专知会员服务
66+阅读 · 2020年6月24日
【CMU】基于图神经网络的联合检测与多目标跟踪
专知会员服务
58+阅读 · 2020年6月24日
基于深度学习的多标签生成研究进展
专知会员服务
143+阅读 · 2020年4月25日
「深度神经网络 FPGA 」最新2022研究综述
专知
3+阅读 · 2022年3月26日
数据中心传感器技术应用 白皮书
专知
0+阅读 · 2021年11月13日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
已删除
将门创投
12+阅读 · 2018年6月25日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
信息物理融合系统 (CPS)研究综述
专知会员服务
46+阅读 · 2022年3月14日
专知会员服务
56+阅读 · 2021年10月4日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
应用知识图谱的推荐方法与系统
专知会员服务
116+阅读 · 2020年11月23日
FPGA加速系统开发工具设计:综述与实践
专知会员服务
66+阅读 · 2020年6月24日
【CMU】基于图神经网络的联合检测与多目标跟踪
专知会员服务
58+阅读 · 2020年6月24日
基于深度学习的多标签生成研究进展
专知会员服务
143+阅读 · 2020年4月25日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员