Multimodal ambiguity and color bleeding remain challenging in colorization. To tackle these problems, we propose a new GAN-based colorization approach PalGAN, integrated with palette estimation and chromatic attention. To circumvent the multimodality issue, we present a new colorization formulation that estimates a probabilistic palette from the input gray image first, then conducts color assignment conditioned on the palette through a generative model. Further, we handle color bleeding with chromatic attention. It studies color affinities by considering both semantic and intensity correlation. In extensive experiments, PalGAN outperforms state-of-the-arts in quantitative evaluation and visual comparison, delivering notable diverse, contrastive, and edge-preserving appearances. With the palette design, our method enables color transfer between images even with irrelevant contexts.
翻译:在色彩化方面,多模式的模糊性和色彩出血仍然是挑战性的。 为了解决这些问题, 我们提出一种新的基于 GAN 的色彩化方法 PalGAN, 结合调色板估计和色调关注。 为了绕过多式联运问题, 我们提出一种新的色彩化配方, 首先从输入灰色图像中估算概率调色板, 然后通过发色模型在调色板上进行色调分配。 此外, 我们用色调关注处理色彩出血问题。 它通过考虑语义和强度的关联来研究颜色的相似性。 在广泛的实验中, PalGAN 超越了定量评估和视觉比较中的艺术状态, 提供了显著的多样性、 对比性和边缘保护性外观。 在调色素设计中, 我们的方法使得图像之间的颜色转移, 即使与不相关的环境。