The study of generalising the central difference for integer order Laplacian to fractional order is discussed in this paper. Analysis shows that, in contrary to the conclusion of a previous study, difference stencils evaluated through fast Fourier transform prevents the convergence of the solution of fractional Laplacian. We propose a composite quadrature rule in order to efficiently evaluate the stencil coefficients with the required convergence rate in order to guarantee convergence of the solution. Furthermore, we propose the use of generalised higher order lattice Boltzmann method to generate stencils which can approximate fractional Laplacian with higher order convergence speed and error isotropy. We also review the formulation of the lattice Boltzmann method and discuss the explicit sparse solution formulated using Smolyak's algorithm, as well as the method for the evaluation of the Hermite polynomials for efficient generation of the higher order stencils. Numerical experiments are carried out to verify the error analysis and formulations.
翻译:本文讨论了对拉普拉西亚至分序整数顺序的中央差异进行总体化研究。分析表明,与前一项研究的结论相反,通过快速Fourier变异评估的差分梯形无法使分数拉普拉西亚的解决方案趋于一致。我们提出了一个复合二次曲线规则,以便按照所要求的趋同率有效地评估静态系数,从而保证解决办法的趋同率。此外,我们提议使用普遍化的更高拉蒂斯·波尔茨曼法来生成可接近分数拉普拉西亚的分数线状,其速度和误差是异质的。我们还审查了拉蒂斯·博尔茨曼法的配方,并讨论了使用斯摩利亚克的算法拟订的明显稀少的解决方案,以及评估赫米特聚氨基聚氨酯的方法,以便有效地生成高压质线。进行了纳米实验,以核实误差分析和配方。