A Lagrangian-type numerical scheme called the "comoving mesh method" or CMM is developed for numerically solving certain classes of moving boundary problems which include, for example, the classical Hele-Shaw flow problem and the well-known mean curvature flow problem. This finite element scheme exploits the idea that the normal velocity field of the moving boundary can be extended throughout the entire domain of definition of the problem using, for instance, the Laplace operator. Then, the boundary as well as the finite element mesh of the domain are easily updated at every time step by moving the nodal points along this velocity field. The feasibility of the method, highlighting its practicality, is illustrated through various numerical experiments. Also, in order to examine the accuracy of the proposed scheme, the experimental order of convergences between the numerical and manufactured solutions for these examples are also calculated.


翻译:Lagrangian 类型数字方案称为“ comoving 网格方法” 或 CMM, 用于从数字上解决某些类别的移动边界问题, 其中包括古典的Hele- Shaw 流问题和众所周知的平均曲线流问题。 这个有限元素方案利用了这样一种想法,即移动边界的正常速度场可以扩大到问题定义的整个领域, 例如使用 Laplace 操作员。 然后, 边框和域的有限元素网格通过沿着这个速度场移动节点, 很容易在每一个步骤上更新。 该方法的可行性, 突出其实用性, 通过各种数字实验加以说明。 此外, 为了审查拟议的办法的准确性, 还计算了这些例子的数字和制造的解决办法之间的实验性趋同顺序。

0
下载
关闭预览

相关内容

【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
44+阅读 · 2019年12月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
44+阅读 · 2019年12月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员