Quantum Martin-L\"of randomness (q-MLR) for infinite qubit sequences was introduced by Nies and Scholz. We define a notion of quantum Solovay randomness which is equivalent to q-MLR. The proof of this goes through a purely linear algebraic result about approximating density matrices by subspaces. We then show that random states form a convex set. Martin-L\"of absolute continuity is shown to be a special case of q-MLR. Quantum Schnorr randomness is introduced. A quantum analogue of the law of large numbers is shown to hold for quantum Schnorr random states.
翻译:Nies 和 Scholz 引入了无限 ⁇ 序列(q- MLR) 的量子 Martin- L\ 随机性 。 我们定义了量子 Solovay 随机性的概念, 相当于 q- MLR 。 证明这个概念的证据是纯线性代数结果, 与子空间接近的密度矩阵有关。 然后我们显示随机状态形成一个二次曲线组 。 绝对连续性的 Martin- L\ 显示为 q- MLR 的一个特例。 引入了 Quantum Schnornor 随机性 。 大型定律的量类比显示为 量 Shnorror 随机状态 。