In 2018, Renes [IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 577-592 (2018)] (arXiv:1701.05583) developed a general theory of channel duality for classical-input quantum-output (CQ) channels. That result showed that a number of well-known duality results for linear codes on the binary erasure channel could be extended to general classical channels at the expense of using dual problems which are intrinsically quantum mechanical. One special case of this duality is a connection between coding for error correction (resp. wire-tap secrecy) on the quantum pure-state channel (PSC) and coding for wire-tap secrecy (resp. error correction) on the classical binary symmetric channel (BSC). While this result has important implications for classical coding, the machinery behind the general duality result is rather challenging for researchers without a strong background in quantum information theory. In this work, we leverage prior results for linear codes on PSCs to give an alternate derivation of the aforementioned special case by computing closed-form expressions for the performance metrics. The noted prior results include optimality of the square-root measurement (SRM) for linear codes on the PSC and the Fourier duality of linear codes. We also show that the SRM forms a suboptimal measurement for channel coding on the BSC (when interpreted as a CQ problem) and secret communications on the PSC. Our proofs only require linear algebra and basic group theory, though we use the quantum Dirac notation for convenience.
翻译:2018年,Renes [IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 577-592 (2018)) (arXiv: 1701.05583) 开发了古典投入量子输出(CQ) 频道频道的频道双轨性通用理论。 结果表明,二进制删除通道线性代码的一些众所周知的双轨性结果可以扩展到普通古典渠道, 其代价是使用内在量子通讯机理的双重问题。 这种双重性的一个特殊情况是,在纯价子纯度频道(PSC) 的校正错误校正编码(resp. 线性保密保密) 和古典双轨性纸质定量保密规则( 仅计算用于最佳绩效测量的CSSR 底线性规则) 之间的编码( 之前指出,一般双重性能结果对研究人员来说具有相当大的挑战。 在这项工作中,我们利用PSC 先前的线性代码来提供上述特殊证据的替代,方法是,在SSC 基质-ralation rodealation ro deal deal dealation ex ex ex exmalal ex ex exmal deal ex ex ex ex exmal ex exmutal ex exmmmus ex ex ex ex ex exutututututututututututututututututututututututus laututus ex (我们 ex ex ex) (我们注意到, ex) ex (我们 ex) ex ex) a ex ex ex ex ex sal exs ex ex ex ex ex ex ex ex ex ex ex ex ex ex sal sal sal sal sal sal sal sal sal sal sal exmal exmal ex ex ex ex ex exus ex ex ex ex ex ex ex ex (我们 ex ex ex ex ex ex ex exal ex ex ex ex ex ex (我们 ex