In this work, we investigate the universal representation capacity of the Matrix Product States (MPS) from the perspective of boolean functions and continuous functions. We show that MPS can accurately realize arbitrary boolean functions by providing a construction method of the corresponding MPS structure for an arbitrarily given boolean gate. Moreover, we prove that the function space of MPS with the scale-invariant sigmoidal activation is dense in the space of continuous functions defined on a compact subspace of the $n$-dimensional real coordinate space $\mathbb{R^{n}}$. We study the relation between MPS and neural networks and show that the MPS with a scale-invariant sigmoidal function is equivalent to a one-hidden-layer neural network equipped with a kernel function. We construct the equivalent neural networks for several specific MPS models and show that non-linear kernels such as the polynomial kernel which introduces the couplings between different components of the input into the model appear naturally in the equivalent neural networks. At last, we discuss the realization of the Gaussian Process (GP) with infinitely wide MPS by studying their equivalent neural networks.


翻译:在这项工作中,我们从布林功能和连续功能的角度来调查矩阵产品国的普遍代表性能力。我们表明,组合产品国可以通过为任意给定布林门提供相应的MPS结构构造方法,为任意给定布林门提供相应的MPS结构的构建方法,从而准确地实现任意布林功能。此外,我们证明,具有规模变化性吸附激活作用的MPS的功能空间在美元-维实际协调空间$mathbb{R ⁇ n ⁇ $的紧凑子空间所定义的连续功能空间中十分密集。我们研究了组合产品国与神经网络之间的关系,并表明具有规模不变化的模拟网络功能的MPS相当于一个配备了单层内核功能的单层神经网络。我们为几个特定的MPS模型建造了等等等等的神经网络,并表明非线性内核内核的内核,例如将输入到模型的不同组成部分之间的联动,自然出现在同等的神经网络中。最后,我们讨论以等量的方式研究高层系统网络的实现情况。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年2月19日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员