By coordinating terminal smart devices or microprocessors to engage in cooperative computation to achieve systemlevel targets, distributed optimization is incrementally favored by both engineering and computer science. The well-known alternating direction method of multipliers (ADMM) has turned out to be one of the most popular tools for distributed optimization due to many advantages, such as modular structure, superior convergence, easy implementation and high flexibility. In the past decade, ADMM has experienced widespread developments. The developments manifest in both handling more general problems and enabling more effective implementation. Specifically, the method has been generalized to broad classes of problems (i.e.,multi-block, coupled objective, nonconvex, etc.). Besides, it has been extensively reinforced for more effective implementation, such as improved convergence rate, easier subproblems, higher computation efficiency, flexible communication, compatible with inaccurate information, robust to communication delays, etc. These developments lead to a plentiful of ADMM variants to be celebrated by broad areas ranging from smart grids, smart buildings, wireless communications, machine learning and beyond. However, there lacks a survey to document those developments and discern the results. To achieve such a goal, this paper provides a comprehensive survey on ADMM variants. Particularly, we discern the five major classes of problems that have been mostly concerned and discuss the related ADMM variants in terms of main ideas, main assumptions, convergence behaviors and main features. In addition, we figure out several important future research directions to be addressed. This survey is expected to work as a tutorial for both developing distributed optimization in broad areas and identifying existing theoretical research gaps.


翻译:通过协调终端智能装置或微处理器来协调终端智能装置或微处理器以实现系统一级的目标,分配优化逐渐得到工程和计算机科学的赞同。众所周知的乘数交替方向方法(ADMM)由于许多优势,例如模块结构、高集成、易于执行和高度灵活性,已成为最受欢迎的分配优化工具之一。在过去十年中,ADMMM公司经历了广泛的发展,这些发展表现在处理更一般的问题和更有效地执行。具体地说,该方法被广泛推广到广泛的问题类别(即多块、交错目标、非康韦克斯等 ) 。此外,该方法被广泛加强,以便更有效地实施,例如提高趋同率、更容易的次问题、更高的计算效率、灵活的沟通、与不准确的信息兼容、强劲的通信延误等。这些发展动态导致大量ADMMM公司变体的变体,由智能电网、智能建筑、无线通信、机器学习等广泛领域来庆祝。然而,没有对这些发展结果进行调查,并辨明结果。此外,为了实现这样一个主要的研究模式,我们的主要变体研究领域,在AMMD相关的主要研究领域进行了全面的分析。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员