Interstellar objects (ISOs), astronomical objects not gravitationally bound to the Sun, are likely representatives of primitive materials invaluable in understanding exoplanetary star systems. Due to their poorly constrained orbits with generally high inclinations and relative velocities, however, exploring ISOs with conventional human-in-the-loop approaches is significantly challenging. This paper presents Neural-Rendezvous -- a deep learning-based guidance and control framework for encountering any fast-moving objects, including ISOs, robustly, accurately, and autonomously in real-time. It uses pointwise minimum norm tracking control on top of a guidance policy modeled by a spectrally-normalized deep neural network, where its hyperparameters are tuned with a newly introduced loss function directly penalizing the state trajectory tracking error. We rigorously show that, even in the challenging case of ISO exploration, Neural-Rendezvous provides 1) a high probability exponential bound on the expected spacecraft delivery error; and 2) a finite optimality gap with respect to the solution of model predictive control, both of which are indispensable especially for such a critical space mission. In numerical simulations, Neural-Rendezvous is demonstrated to achieve a terminal-time delivery error of less than 0.2 km for 99% of the ISO candidates with realistic state uncertainty, whilst retaining computational efficiency sufficient for real-time implementation.
翻译:星际天体(ISOs)是没有与太阳紧密相连的天体,很可能代表原始材料,在理解外行星星系时具有宝贵的价值。然而,由于原始材料的原始材料在了解外行星恒星系统时具有非常宝贵的价值。由于这些原始材料的轨道受限极差,其倾角和相对速度普遍较高,因此,探索使用传统人际环流方法的ISOs具有巨大的挑战性。本文展示了神经-共鸣 -- -- 一种深层次的基于深层次学习的指导和控制框架,用以发现任何快速移动的天体,包括国际标准化组织,强力、准确和实时自主地。在以光谱调整的深神经网络为模型制成的指导政策顶部使用点性最低规范跟踪控制。在这种光谱标准化的深神经网络上,其超参数与新引入的损失函数调整直接惩罚状态轨迹跟踪错误。我们严格地表明,即使在国际标准化组织具有挑战性的探索的情况下,神经-共振荡式指导和控制框架在预期的航天器发射误差上有一个高概率指数约束;和在模型预测控制的解决办法上存在有限的最佳差距,而两者对于这种关键空间交付任务都是不可或缺的,对于这样一个关键空间飞行任务是不可或缺的。在模拟轨道上,一个不甚高时程中测测距值的轨道上,一个不及精确的轨道定位的轨中测距值为99-测距值的轨道的轨道的轨距值。