In this study, we propose a dense frequency-time attentive network (DeFT-AN) for multichannel speech enhancement. DeFT-AN is a mask estimation network that predicts a complex spectral masking pattern for suppressing the noise and reverberation embedded in the short-time Fourier transform (STFT) of an input signal. The proposed mask estimation network incorporates three different types of blocks for aggregating information in the spatial, spectral, and temporal dimensions. It utilizes a spectral transformer with a modified feed-forward network and a temporal conformer with sequential dilated convolutions. The use of dense blocks and transformers dedicated to the three different characteristics of audio signals enables more comprehensive enhancement in noisy and reverberant environments. The remarkable performance of DeFT-AN over state-of-the-art multichannel models is demonstrated based on two popular noisy and reverberant datasets in terms of various metrics for speech quality and intelligibility.
翻译:在本研究中,我们提议建立一个密集的频率关注网络(DeFT-AN)用于多通道语音增强。DeFT-AN是一个遮罩估计网络,它预测一种复杂的光谱遮罩模式,用于抑制输入信号短时间的傅里叶变换(STFT)中嵌入的噪音和回声。拟议的遮罩估计网络包含三种不同类型的区块,用于收集空间、光谱和时间维度的信息。它使用一个光谱变压器,配有经过修改的进料前网络,以及一个与相继膨胀相适应的时间相容器。使用用于三种不同音频信号特性的稠密区块和变压器可以在噪音和回动环境中更全面地增强。DeFT-AN相对于最先进的多频道模型的显著性表现表现体现在两种流行的音响和回波数据集上,用于语音质量和智能。</s>