Predicting travel time under rare temporal conditions (e.g., public holidays, school vacation period, etc.) constitutes a challenge due to the limitation of historical data. If at all available, historical data often form a heterogeneous time series due to high probability of other changes over long periods of time (e.g., road works, introduced traffic calming initiatives, etc.). This is especially prominent in cities and suburban areas. We present a vector-space model for encoding rare temporal conditions, that allows coherent representation learning across different temporal conditions. We show increased performance for travel time prediction over different baselines when utilizing the vector-space encoding for representing the temporal setting.
翻译:由于历史数据有限,在稀有时间条件下(例如公共假日、学校假期等)预测旅行时间构成挑战,如果有历史数据的话,历史数据往往形成一个不相同的时间序列,因为长期内其他变化的可能性很大(例如公路工程、交通平准举措等)。这在城市和郊区尤为突出。我们提出了一个用于编码稀有时间条件的矢量空间模型,允许在不同时间条件下进行连贯的代表学习。在使用矢量空间编码代表时间设置时,我们显示了在不同基线上对旅行时间的预测的更高性能。