Previous matching component analysis (MCA) techniques map two data domains to a common domain for further processing in data fusion and transfer learning contexts. In this paper, we extend these techniques to the star-graph multimodal (SGM) case in which one particular data domain is connected to $m$ others via an objective function. We provide a particular feasible point for the resulting trace maximization problem in closed form and algorithms for its computation and iterative improvement, leading to our main result, the SGM maps. We also provide numerical examples demonstrating that SGM is capable of encoding into its maps more information than MCA when few training points are available. In addition, we develop a further generalization of the MCA covariance constraint, eliminating a previous feasibility condition and allowing larger values of the rank of the prescribed covariance matrix.
翻译:先前的匹配部件分析(MCA)技术将两个数据领域映射成一个共同领域,以便进一步处理数据融合和转移学习环境,在本文件中,我们将这些技术推广到星光多式联运(SGM)案中,在该案中,一个特定数据领域通过客观功能与其他百万美元相联,我们为由此产生的封闭形式的微量最大化问题以及计算和迭接改进的算法提供了一个特别可行的点,从而得出我们的主要结果,即SGM地图。我们还提供了数字实例,表明SGM在培训点很少时能够将比MCA更多的信息编码到其地图中。此外,我们还进一步将MCA变量限制加以概括化,消除了以前的可行性条件,允许增加规定共变矩阵的级别。