We formulate an asymmetric (or non-commutative) distance between tasks based on Fisher Information Matrices, called Fisher task distance. This distance represents the complexity of transferring the knowledge from one task to another. We provide a proof of consistency for our distance through theorems and experiments on various classification tasks from MNIST, CIFAR-10, CIFAR-100, ImageNet, and Taskonomy datasets. Next, we construct an online neural architecture search framework using the Fisher task distance, in which we have access to the past learned tasks. By using the Fisher task distance, we can identify the closest learned tasks to the target task, and utilize the knowledge learned from these related tasks for the target task. Here, we show how the proposed distance between a target task and a set of learned tasks can be used to reduce the neural architecture search space for the target task. The complexity reduction in search space for task-specific architectures is achieved by building on the optimized architectures for similar tasks instead of doing a full search and without using this side information. Experimental results for tasks in MNIST, CIFAR-10, CIFAR-100, ImageNet datasets demonstrate the efficacy of the proposed approach and its improvements, in terms of the performance and the number of parameters, over other gradient-based search methods, such as ENAS, DARTS, PC-DARTS.


翻译:我们根据渔业信息矩阵制定任务之间的不对称(或非互换性)距离,称为渔业任务距离。这种距离代表了将知识从一个任务转移到另一个任务的复杂性。我们通过理论和对来自MNIST、CIFAR-10、CIFAR-100、图像网和任务数据集的各种分类任务进行实验,为我们的距离提供了证据。接下来,我们利用Fisher任务距离建立一个在线神经结构搜索框架,我们可以进入过去学到的任务。通过利用渔业任务距离,我们可以确定最接近目标任务的任务,并利用从这些相关任务中学到的知识来完成目标任务。我们在这里展示了如何利用目标任务与一组学习任务之间的拟议距离来减少目标任务的神经结构搜索空间。具体任务结构搜索空间的复杂程度是通过建立类似任务的最佳结构来实现的,而不是完全搜索和不使用这一侧面信息。我们可以通过MNIST、CIFAR-10、CIFAR-100、ART-EN-AS的图像网络方法的实验结果,展示了拟议搜索方式的效能,例如搜索方式的搜索方式,以及AS-D的升级方法。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月17日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
31+阅读 · 2021年3月29日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年6月17日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
31+阅读 · 2021年3月29日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
12+阅读 · 2018年9月5日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员