Motivated by Breiman's rousing 2001 paper on the "two cultures" in statistics, we consider the role that different modeling approaches play in causal inference. We discuss the relationship between model complexity and causal (mis)interpretation, the relative merits of plug-in versus targeted estimation, issues that arise in tuning flexible estimators of causal effects, and some outstanding cultural divisions in causal inference.
翻译:在布雷曼2001年关于统计“两种文化”的论文的启发下,我们考虑了不同模型方法在因果推论中所起的作用。 我们讨论了模型复杂性和因果(误)解释之间的关系、插座与定向估计的相对优点、调整因果效应灵活估计器时出现的问题,以及一些突出的文化因果推论差异。