Although a plethora of architectural variants for deep classification has been introduced over time, recent works have found empirical evidence towards similarities in their training process. It has been hypothesized that neural networks converge not only to similar representations, but also exhibit a notion of empirical agreement on which data instances are learned first. Following in the latter works$'$ footsteps, we define a metric to quantify the relationship between such classification agreement over time, and posit that the agreement phenomenon can be mapped to core statistics of the investigated dataset. We empirically corroborate this hypothesis across the CIFAR10, Pascal, ImageNet and KTH-TIPS2 datasets. Our findings indicate that agreement seems to be independent of specific architectures, training hyper-parameters or labels, albeit follows an ordering according to image statistics.


翻译:尽管经过一段时间,为深入分类采用了大量建筑变体,但最近的工作发现经验证据,表明其培训过程有相似之处,人们假设神经网络不仅与类似的表达方式相融合,而且展示了首先了解数据实例的经验性协议概念。在后一个过程之后,我们确定了一种衡量标准,以量化这种分类协议之间的关系,并假设这种协议现象可以映射为所调查数据集的核心统计数据。我们在CIFAR10、Pascal、图像网和KTH-TIPS2数据集中的经验性证据证实了这一假设。我们的调查结果表明,协议似乎独立于特定的结构、培训超参数或标签,尽管是根据图像统计的顺序排列的。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
18+阅读 · 2021年3月16日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员