We propose a new formulation for the multi-robot task planning and allocation problem that incorporates (a) precedence relationships between tasks; (b) coordination for tasks allowing multiple robots to achieve increased efficiency; and (c) cooperation through the formation of robot coalitions for tasks that cannot be performed by individual robots alone. In our formulation, the tasks and the relationships between the tasks are specified by a task graph. We define a set of reward functions over the task graph's nodes and edges. These functions model the effect of robot coalition size on the task performance, and incorporate the influence of one task's performance on a dependent task. Solving this problem optimally is NP-hard. However, using the task graph formulation allows us to leverage min-cost network flow approaches to obtain approximate solutions efficiently. Additionally, we explore a mixed integer programming approach, which gives optimal solutions for small instances of the problem but is computationally expensive. We also develop a greedy heuristic algorithm as a baseline. Our modeling and solution approaches result in task plans that leverage task precedence relationships and robot coordination and cooperation to achieve high mission performance, even in large missions with many agents.
翻译:我们为多机器人任务规划和分配问题提出了新的提法,其中包括:(a) 任务之间的优先关系;(b) 协调使多个机器人能够提高效率的任务;以及(c) 通过建立机器人联盟开展合作,完成不能由个体机器人单独完成的任务;在制订过程中,任务和任务之间的关系由任务图具体列出;我们为任务图的节点和边缘确定一套奖励功能。这些功能模式是机器人联盟规模对任务绩效的影响,并纳入一个任务业绩对依赖性任务的影响。最理想地解决这个问题是NP硬的。然而,使用任务图的表述使我们能够利用低成本网络流动方法来有效地获得近似的解决办法。此外,我们探索一种混合的编程方法,为小问题提供最佳解决办法,但计算成本昂贵。我们还开发了一种贪婪的超自然算法作为基线。我们的建模和解决办法使得任务计划能够利用任务关系和机器人协调与合作实现高任务绩效,即使是在与许多代理人的大型任务中也是如此。