We present an application of anomaly detection techniques based on deep recurrent autoencoders to the problem of detecting gravitational wave signals in laser interferometers. Trained on noise data, this class of algorithms could detect signals using an unsupervised strategy, i.e., without targeting a specific kind of source. We develop a custom architecture to analyze the data from two interferometers. We compare the obtained performance to that obtained with other autoencoder architectures and with a convolutional classifier. The unsupervised nature of the proposed strategy comes with a cost in terms of accuracy, when compared to more traditional supervised techniques. On the other hand, there is a qualitative gain in generalizing the experimental sensitivity beyond the ensemble of pre-computed signal templates. The recurrent autoencoder outperforms other autoencoders based on different architectures. The class of recurrent autoencoders presented in this paper could complement the search strategy employed for gravitational wave detection and extend the reach of the ongoing detection campaigns.
翻译:在激光干涉仪中检测引力波信号的问题上,我们采用了基于深层重复式自动代号的异常探测技术。根据噪音数据培训,这类算法可以使用一种不受监督的战略,即不针对特定来源,来检测信号。我们开发了一种分析两个干涉仪数据的定制结构。我们将所获得的性能与其他自动代号结构以及同同同同级分类器进行比较。拟议战略的未监督性质在精确性方面造成了成本,而与较传统的监督技术相比。另一方面,在将实验灵敏性普遍化方面,除了预合成信号模板的组合之外,还取得了质的收益。经常性自动coder超越了基于不同结构的其他自动代号。本文中介绍的经常性自动代号的类别可以补充用于引力波探测的搜索战略,并扩大正在进行的探测运动的范围。