This paper studies well-posedness and parameter sensitivity of the Square Root LASSO (SR-LASSO), an optimization model for recovering sparse solutions to linear inverse problems in finite dimension. An advantage of the SR-LASSO (e.g., over the standard LASSO) is that the optimal tuning of the regularization parameter is robust with respect to measurement noise. This paper provides three point-based regularity conditions at a solution of the SR-LASSO: the weak, intermediate, and strong assumptions. It is shown that the weak assumption implies uniqueness of the solution in question. The intermediate assumption yields a directionally differentiable and locally Lipschitz solution map (with explicit Lipschitz bounds), whereas the strong assumption gives continuous differentiability of said map around the point in question. Our analysis leads to new theoretical insights on the comparison between SR-LASSO and LASSO from the viewpoint of tuning parameter sensitivity: noise-robust optimal parameter choice for SR-LASSO comes at the "price" of elevated tuning parameter sensitivity. Numerical results support and showcase the theoretical findings.
翻译:本文研究了平方根LASSO(SR-LASSO)的完整性和参数敏感性,这是在有限维线性反问题中恢复稀疏解的一种优化模型。 SR-LASSO(例如,相对于标准LASSO)的优势在于规则化参数的最佳调节对测量噪声具有稳健性。本文在SR-LASSO的解处提供了三个基于点的正则条件:弱,中间和强条件。结果表明,弱条件意味着所讨论的解的唯一性。中间条件提供了一个可定向可微且局部Lipschitz解映射(具有明确的Lipschitz界),而强条件为所述地图在所讨论的点周围提供了连续可微性。我们的分析提供了从调节参数敏感性的角度比较SR-LASSO和LASSO的新理论洞察力:SR-LASSO的噪声鲁棒最优参数选择的“代价”是调节参数敏感性升高。数字结果支持并展示了理论发现。