This work provides the first theoretical study on the ability of graph Message Passing Neural Networks (gMPNNs) -- such as Graph Neural Networks (GNNs) -- to perform inductive out-of-distribution (OOD) link prediction tasks, where deployment (test) graph sizes are larger than training graphs. We first prove non-asymptotic bounds showing that link predictors based on permutation-equivariant (structural) node embeddings obtained by gMPNNs can converge to a random guess as test graphs get larger. We then propose a theoretically-sound gMPNN that outputs structural pairwise (2-node) embeddings and prove non-asymptotic bounds showing that, as test graphs grow, these embeddings converge to embeddings of a continuous function that retains its ability to predict links OOD. Empirical results on random graphs show agreement with our theoretical results.
翻译:这项工作为图形消息传递神经网络(gMPNNs) -- -- 例如图形神经网络(GNNS) -- -- 进行感应传出(OOOD)链接的预测任务的能力提供了第一份理论研究,在这些任务中,部署(测试)图形的大小大于培训图形。我们首先证明非无干扰的界限显示,GMPNs获得的图形消息传递神经网络(gMPNns)嵌入器能够随着测试图的扩大而随机地归结为随机的猜测。我们然后提议一个具有理论意义的GMPNN,输出结构对对比(2-node)嵌入并证明非辅助边框显示,随着测试图的增长,这些嵌入器会聚集到连续功能的嵌入中,从而保留着预测OOD(结构变量)链接的能力。随机图形的实验结果显示我们理论结果的一致。