Higher-Order Influence Functions (HOIF), developed in a series of papers over the past twenty years, is a fundamental theoretical device for constructing rate-optimal causal-effect estimators from observational studies. However, the value of HOIF for analyzing well-conducted randomized controlled trials (RCT) has not been explicitly explored. In the recent US Food \& Drug Administration (FDA) and European Medical Agency (EMA) guidelines on the practice of covariate adjustment in analyzing RCT, in addition to the simple, unadjusted difference-in-mean estimator, it was also recommended to report the estimator adjusting for baseline covariates via a simple parametric working model, such as a linear model. In this paper, we show that an HOIF-motivated estimator for the treatment-specific mean has significantly improved statistical properties compared to popular adjusted estimators in practice when the number of baseline covariates $p$ is relatively large compared to the sample size $n$. We also characterize the conditions under which the HOIF-motivated estimator improves upon the unadjusted estimator. Furthermore, we demonstrate that a novel debiased adjusted estimator proposed recently by Lu et al. is, in fact, another HOIF-motivated estimator under disguise. Finally, simulation studies are conducted to corroborate our theoretical findings.
翻译:暂无翻译