Aircraft models may be considered as flat if one neglects some terms associated to aerodynamics. But some maneuvers may be hard to achieve with this flat approximation. Computational experiments in Maple show that in some cases a suitably designed feed-back allows to follow such trajectories, when applied to the non-flat model. We propose an iterated process to compute a more achievable trajectory, starting from the flat reference trajectory. More precisely, the unknown neglected terms in the flat model are iteratively re-evaluated using the values obtained at the previous step. This process may be interpreted as a new trajectory parametrization using an infinite number of derivatives, a property that may be called generalized flatness. We illustrate the pertinence of this approach in flight conditions of increasing difficulties, from power-off gliding flight to aerobatics.
翻译:如果忽略了与空气动力学有关的某些术语, 航空器模型可能被视为平坦。 但是, 某些操作可能很难用这个平坦的近似值实现。 在Mamele的计算实验显示, 在某些情况下, 适当设计的反馈回路在应用到非平滑模型时可以遵循这种轨迹。 我们建议从平坦的参照轨迹开始, 重复计算更可实现的轨迹。 更确切地说, 平坦模型中未知的被忽略的术语会利用前一步获得的数值反复重新评价。 这一过程可能会被解释为使用无限数量的衍生物( 一种可称为普遍平坦的特性) 的新的轨迹准化。 我们演示了这一方法在越来越困难的飞行条件下的关联性, 从断电滑翔飞行到有氧飞行。