We illustrate an application of Algorithmic Information Dynamics to Cellular Automata (CA) demonstrating how this digital calculus is able to quantify change in discrete dynamical systems. We demonstrate the sensitivity of the Block Decomposition Method on 1D and 2D CA, including Conway's Game of Life, against measures of statistical nature such as compression (LZW) and Shannon Entropy in two different contexts (1) perturbation analysis and (2) dynamic-state colliding CA. The approach is interesting because it analyses a quintessential object native to software space (CA) in software space itself by using algorithmic information dynamics through a model-driven universal search instead of a traditional statistical approach e.g. LZW compression or Shannon entropy. The colliding example of two state-independent (if not three as one is regulating the collision itself) discrete dynamical systems offers a potential proof of concept for the development of a multivariate version of the AID calculus.
翻译:我们演示了对细胞自动动力(CA)应用算法信息动态(Agroit Information Information Automata)来显示这种数字微积分是如何量化离散动态系统变化的。我们展示了1D和2D CA,包括Conway的生命游戏的块分解方法在两种不同情况下对统计性质措施的敏感性,如压缩(LZW)和香农大肠在两种不同情况下的应用:(1) 扰动分析,(2) 动态状态对CA。这个方法很有意思,因为它通过模型驱动的普遍搜索而不是传统的统计方法(如LZW 压缩或香农英特罗普)来分析软件空间(CAAA)本身的软件空间(CAA)的原始基本物体。两个独立状态(如果不是3个是调节碰撞本身的)离散动态系统为开发AID微积体的多变量版本提供了潜在概念证明。