The goal of emotional brain state classification on functional MRI (fMRI) data is to recognize brain activity patterns related to specific emotion tasks performed by subjects during an experiment. Distinguishing emotional brain states from other brain states using fMRI data has proven to be challenging due to two factors: a difficulty to generate fast yet accurate predictions in short time frames, and a difficulty to extract emotion features which generalize to unseen subjects. To address these challenges, we conducted an experiment in which 22 subjects viewed pictures designed to stimulate either negative, neutral or rest emotional responses while their brain activity was measured using fMRI. We then developed two distinct Convolution-based approaches to decode emotional brain states using only spatial information from single, minimally pre-processed (slice timing and realignment) fMRI volumes. In our first approach, we trained a 1D Convolutional Network (84.9% accuracy; chance level 33%) to classify 3 emotion conditions using One-way Analysis of Variance (ANOVA) voxel selection combined with hyperalignment. In our second approach, we trained a 3D ResNet-50 model (78.0% accuracy; chance level 50%) to classify 2 emotion conditions from single 3D fMRI volumes directly. Our Convolutional and Residual classifiers successfully learned group-level emotion features and could decode emotion conditions from fMRI volumes in milliseconds. These approaches could potentially be used in brain computer interfaces and real-time fMRI neurofeedback research.


翻译:在功能 MRI (fMRI) 数据中,情感大脑状态分类的目标是识别与实验对象执行的特定情感任务有关的大脑活动模式。使用 FMRI 数据将其他大脑国家的情感大脑状态与使用FMRI 数据的其他大脑状态区别开来,这证明具有挑战性,原因有二:难以在短时间框架内生成快速而准确的预测,难以提取情感特征,这些特征一般化为看不见的主体。为了应对这些挑战,我们进行了一项实验,在实验中,22个对象观看了旨在刺激消极、中立或休息情绪反应的图片,而其大脑活动则使用 FMRI 进行测量。然后,我们开发了两种不同的基于 Convolution-Cond-50 模式(78.0%的准确性能;50级的智商预处理) FRI 数量。在我们的第一个方法中,我们训练了1D 革命网络网络(84.9%的精度;机会的33%) 将三种情绪状况分类为三种情绪状况,使用单向感官分析(ANOVA) 和超声调。在第二个方法中,我们训练了3DNet- 50 模型(78.80 准确性) ; 调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调,从我们C.

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月15日
A Survey on Data Augmentation for Text Classification
Arxiv
13+阅读 · 2021年5月25日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员